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Abstract 
A 4600 Hz fast ramping synchrotron is explored as an economical way of 
accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current 
losses are minimized by the low machine duty cycle plus thin grain oriented 
silicon steel laminations and thin copper wires. Combined function magnets 
with high gradients alternating within single magnets form the lattice we 
describe. Muon survival is 83%. 

1. Introduction 

Traditionally ramping synchrotrons have provided economical particle acceleration. Here 
we explore a very fast ramping muon synchrotron for a neutrino factory [I]. The accelerated 
muons would be stored in aracetrack to produce neutrino beams as they decay (p- -+ e-Veu, 
or p+ -+ e+u,V,). Neutrino oscillations [2] have been observed at experiments such as 
Homestake [3], Super-Kamiokande [4] and SNO [5 ] .  Further exploration using a neutrino 
factory could reveal effects such as CP violation in the lepton sector which could explain the 
matter-antimatter asymmetry of the universe. 

This synchrotron must accelerate muons from 4 to 20 GeVlc with moderate decay loss. 
Because synchrotron radiation goes as m', muons radiate two billion times ((105.7/0.511)') 
less power than electrons for any given ring diameter and lepton energy. Magnet eddy current 
losses are minimized by the low duty cycle of the machine plus thin iron laminations and 
copper conductors. Grain oriented silicon steel is used to provide a high magnetic field with a 
high p to minimize magnetic energy stored in the return yoke. The magnetic energy stored in 
the gap is minimized by reducing its size. Cool muons [6] with low beam emittance allow this. 
Stored energy goes as B2/2p. The voltage required to drive a magnet is equal to -L dildt. 
Very high voltage is expensive. di ldt  must be large because of the 2 ps muon lifetime, so 
the main option for lowering voltage is to shrink the volume of stored energy to reduce the 
inductance, L. 
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Table 1. Combined function magnet cell parameters. Five cells make up an arc and 18 arcs form 
the ring. 

Cell length (m) 5.28 ' 
Combined dipole length (m) 2.24 
Combined dipole B,,a (T) 0.9 
Combined dipole gradient (T m-') 

Pure dipole B (T) 1.8 
Momentum (GeV/c) 20 

Phase advance/cell (degrees) 72 
Bmax (m) 8.1 
Dispersion max (m) 0.392 

20.2 
Pure dipole length (m) 0.4 

Normalized trans. acceptance (rr mm rad) 4 

Table 2. Straight section lattice parameters. There are two quadrupoles per straight. 

Acceleration to 4 GeV might feature fixed field dogbone arcs [7] to minimize muon decay 
loss. Fast ramping synchrotrons [7, 81 might also accelerate muons to higher energies for a 
p+p- collider [9]. 

2. Lattices 

As a first step, we form arcs with sequences of combined function cells formed within 
continuous long magnets, whose poles are alternately shaped to give focusing gradients of 
each sign. An example of such a cell has been simulated using SYNCH [IO]. The example 
has gradients that alternate from positive 20 T m-' gradient (2.24 m long), to zero gradient 
(0.4 m long) to negative 20 T m-l gradient (2.24 m) to zero gradient (0.4 m], etc. The relatively 
short zero gradient section is included to approximate a real smooth change in the gradients. 
Details are given in table 1. 

It is proposed to use five such arc cells (possibly all in one magnet) to form an arc seg- 
ment. These segments are alternated with straight sections containing RF. The phase advance 
through one arc segment is 5 x 72" = 360". This being so, dispersion suppression between 
straights and arcs can be omitted. With no dispersion in the straight sections, the dispersion per- 
forms one full oscillation in each arc segment, returning to zero for the next straight as shown in 
figure 1. There will be 18 such arc segments and 18 straight sections, forming the 18 super- 
periods in the ring. 

Straight sections (22 m) without dispersion are used for superconducting RF, and, in two 
longer straights (44 m), the injection and extraction. To assure sufficiently low magnetic fields 
at the cavities, relatively long field free regions are desirable. A straight consisting of two half 
cells would allow a central gap of 10 m between quadrupoles, and two smaller gaps at the 
ends. Details are given in table 2. Matching between the arcs and straights is not yet designed. 
The total circumference of the ring including combined function magnets and straight sections 
adds up to 917 m (18 x 26.5 + 16 x 22 + 2 x 44). 
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Figure 1. Combined function magnets bend the muons in the arcs. Superconducting RF cavities 
accelerate muons in the straight sections. Two quadrupoles per straight section provide focusing. 
The straight sections are dispersion free. 

Table 3. Superconducting RF parameters. 

Frequency (MHz) 20 1 

Gradient (MV m-') 15 
Stored energy (J) 900 
Muons per train 
Orbits (4 to 20 GeV/c) 
Number of RF cavities 160 
RF total (MV) 1800 
Aubcam (J) 110 
Energy loading 0.082 
Voltage drop 0.041 
Muon acceleration time (ps) 37 
Muon survival 0.83 

Gap (m) 0.75 

5 x 10'2 
12 

3. Superconducting RF 

The RF must be distributed around the ring to avoid large differences between the beam 
momentum (which increases in steps at each RF section) and the arc magnetic field (which is 
increasing continuously). RF parameters are shown in table 3. 

The amount of RF used is a trade-off between cost and muon survival. Survival is 
somewhat insensitive to the fraction of stored energy the beam removes from the RF cavities, 
because the voltage drop is balanced by time dilation. Here, only 8.2% of RF energy is 
used. One could, in the spirit of Oliver Twist, ask for more. Using more of the RF energy is 
particularly appealing with a smaller ring. Very cold muons require less focusing and allow a 
smaller ring. If the muons take a few extra turns at the end to accelerate, only a few extra will 
be lost. Also, extra acceleration time at the end will translate into less voltage needed to ramp 
magnets. 
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Figure 2. Alternating gradient magnet laminations with grain oriented silicon steel. The arrows 
show both the magnetic field direction and the grain direction of the steel. Ifneeded, four pieces 
might be used per layer as shown to fully exploit the high permeability and low hysteresis in the 
grain direction [12, 22, 24, 251 as noted in table 4. The 'C' pieces provide rigidity. Simpler 
solutions with one or two pieces per layer are under investigation. The horizontal tab increases the 
gradient by lowering the field to roughly zero on the wide side of the gap. The four coils (0) are 
wired in parallel. 

,. 

4. Combined function magnets 

The muons accelerate from 4 to 20 GeV. If they are extracted at 95% of full field they will be 
injected at 19% of full field. For acceleration with a plain sinewave, injection occurs at 11" 
and extraction occurs at 72". So the phase must change by 61" in 37 ps. Thus the sine wave 
goes through 360" in 218 ps, which equals a frequency of 4600 Hz. 

Estimate the energy stored in each 26.5 m long combined function magnet. The gap is 
about 0.14 m wide and has an average height of 0.06 m. Assume an average field of 1.1 T. The 
permeability constant, po, is 4n x W = B2/2p~[Volume] = 110 000 J. Next given one 
turn, an LC circuit capacitor and a 4600 Hz frequency, estimate current, voltage, inductance 
and capacitance as follows, 

B I z  
+ I = - -  - 52kA; B=-  

IZ PON 
W = 0.5 L I Z  -+ L = 2W/12 = SOpH (1) 

PONI 

(2) 

Separate coils might be put around each return yoke to halve the voltage as illustrated in 
figure 2. The stack of SCRs driving each coil might be centre tapped to halve the voltage 
again. Four equally spaced coil slots could be put in each side yoke to cut the voltage by five, 
while leaving the pole faces continuous. 6 kV is easier to insulate than 120 kV. It may be 
useful to shield or chamfer [12] magnet ends to avoid large eddy currents where the field lines 
typically do not follow laminations. A dc offset power supply [13] could be useful. Neutrino 
horn power supplies look promising [l l] .  

Grain oriented silicon steel is chosen for the return yoke due to its high permeability at 
high field as noted in table 4. This minimizes the energy stored in the yoke which goes as 
B2/2p. The skin depth [14] of a 100 p m  thick lamination is given by 

skin depth = S = Jp/nfcL = J47 x 10-8/n x 4600 x lOOOp0 = 160pm. (3) 
Take p = 100Opo as a limit on magnetic saturation and hence energy storage in the yoke. 

Next estimate the fraction of the inductance of the yoke that remains after eddy currents shield 
the laminations [15]. The lamination thickness is 1: 

(4) L/Lo = (S/t)(sinh(t/S) + sin(t/d))/(cosh(t/b) + cos(t/S)) = 0.995. 
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Table 4. Approximate permeabilities of soft magnetic materials. The permeability is B/poH.  
Grain oriented silicon steel has a much higher permeability parallel (11) to its rolling direction than 
in the perpendicular (I) direction [16, 171. 

Material 1.0T 1.5T 1.8T 

1008 Steel 3000 2000 200 
Grain oriented (11) 40 000 30000 3000 
Grain oriented (I) 4000 1000 
NKKSuperE-Core 20000 300 50 
Metglas 2605SA1 300000 10000 1 

~~ 

Table 5. Resistivity, magnetic saturation and coercivity of conductors, cooling tubes and soft 
magnetic materials. The magnetic materials include 50, 100 [lS] and 175 p m  [16, 191 thick grain 
oriented silicon steel, NKK Super E-Core [20] and Metglas [21]. 

Material Composition 

Copper c u  1.8 - - - 
Stainless 316L 70 Fe, IS Cr, 10 Ni, 2 Mo, 0.03 C 74 - - - 
Titanium 6Al4V 90 Ti, 6 Al, 4 V 171 - - - 
1008 Steel 99 Fe. 0.08 C 12 2.09 0.8 - 
Grain oriented 3 Si, 97 Fe 47 1.95 0.1 50, 100, 175 
NKK Super E-Core 6.5 Si, 93.5 Fe 82 1.8 0.2 50, 100 
Metglas 2605SA1 81 Fe, 14 B, 3 Si, 2 C 135 1.6 0.03 30 

So it appears that magnetic fields can penetrate 100 p m  thick laminations at 4600 Hz. 
If allowable, thicker 175 p m  thick laminations would be half as costly and can achieve a 
somewhat higher packing fraction. 

Calculate the resistive energy loss in the copper coils, which over time is equal to half the 
loss at the maximum current of 52 000 A. The 1/2 comes from the integral of cosine squared. 
Table 5 gives the resistivity of copper. Four 5 cm square copper conductors each 5300 cm 
long have a total power dissipation of 130 kW/magnet. Eighteen magnets give a total loss of 
2340 kW. But the neutrino factory runs at 30 Hz. Thirty half cycles of 109 ps per second give 
a duty factor of 300 and a total Z2R loss of 8000 W. Muons are orbited in opposite directions 
on alternate cycles. If this proves too cumbersome, the duty cycle factor could be lowered 
to 150: 

2 l I  
P = Z2R 1 cos’@) d8 = 130 000 W/magnet. 

5300(1.8pQcm) 
R =  = 95 jA-22; 

(4) ( 5 3  

Find the skin depth of copper at 4600 Hz to see if 0.25 mm (30 gauge) wire is usable: 

skin depth = S = Jz = 41.8 x 10-g/n x 4600 x po = 0.97 mm. (6) 

Now calculate the dissipation due to eddy currents in this 0.25 mm wide ‘conductor, which 
will consist of transposed strands to reduce this loss [12,22]. To get an idea, take the maximum 
B-field during a cycle to be that generated by a 0.025 m radius conductor carrying 26 000 A. 
The eddy current loss in a rectangular conductor made of transposed square wires 0.25 mm 
wide (sometimes called Litz wire [23]) with a perpendicular magnetic field is as follows. The 
width of the wire is w and B = poI/2nr = 0.2 T 

’ 
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(2nf B w ) ~  (2n x 4600 x 0.2 x 0.00025)2 
P = wolume] = [4 x 0.05* x 531 = 2800 kW. 

24P (24)l.S x lo-* 
(7) 

Multiply by 18 magnets and divide by a duty factor of 300 to get an eddy current loss of 
170 kW in the copper. Stainless steel water cooling tubes will dissipate a similar amount of 
power [7]. Alloy titanium cooling tubes would dissipate less. 

Calculate the eddy current losses [22] in the 100 p m  thick iron laminations. Take a 
quarter metre square area, a 26.5 m length and an average field of 1.1 T 

(8) 
(2n f Bt)2  (2n x 2600 x 1.1 x 0.0001)2 

P = [vol] = r(26.5) (0.5’)] = 5900 kW. 24P (24)47 x 
Multiply by 18 magnets and divide by a duty factor of 300 to get an eddy current loss in I 

the iron laminations of 350 kW or 700 W m-l of magnet. So the iron will need some cooling. 
The ring only ramps 30 times per second, so the J H  . dB hysteresis losses will be low, even 
more so because of the low coercive force, H,, of grain oriented silicon steel. 

5. Conclusions 

The low duty cycle of the neutrino factory leads to reasonable eddy current losses in a 
4600 Hz ring. Muon survival is 83%. The high permeability of grain oriented silicon steel 
permits high fields with little,energy stored in the yoke. Gradients are switched within dipoles 
to minimize eddy current losses in ends. Time dilation allows extra orbits with little muon 
decay at the end of a cooling cycle. This allows one to use more of the stored RF energy. Much 
of the magnetic field in our lattice is used for focusing rather than bending the muon beam. 
More muon cooling would lead to less focusing, more bending and an even smaller ring. 
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